
Fig. 7. Cubic NLS equation with V = �2juj2. Left: Exact solution. Right: Comparison. The numerical solution is computed with D = 1
and r0 = 5.
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Fig. 8. Cubic NLS equation with V = �2juj2. Left: D = 1. Right: r0 = 5.
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A direct computation shows
Eðu0Þ � 80:5478 > 0;
which implies the blow-up will not occur for this numerical test. We depict the exact solution in the left plot of
Fig. 9, and make comparison between the numerical solution and the exact solution in the right plot. Numer-
ical errors are shown in Fig. 10. Similar observations as those for the cubic numerical test case can be made.

In the real applications, especially for high-dimensional problems, the grid parameters cannot be chosen as
small as those used in the above numerical tests. This means besides the approximate PML ABC, the spatial-
temporal discretization can be another significant source of error. Let us go back to the numerical test on the
cubic NLS equation. In Fig. 11, we depict the errors between the numerical solutions and the exact solutions
for different spatial and time steps. At the initial stage (before t = 0.6), the PML layers do not take into effect
since the waves have not reached the boundary points yet. The discretization error dominates, and it can be
reduced by decreasing Dt and h. After t = 0.6, there is a transition period when waves travel through the
boundary points. This period is quite short. In fact, at t = 0.8, only 6% of the total energy is left in the physical
domain [xL,xR]. During the time period [0.6, 0.8], the error from PML layers becomes more and more signif-
icant, and the effect of decreasing Dt and h becomes more and more limited. After t = 0.8, the error from PML
layers completely dominates, while the influence of spatial-temporal discretization becomes less important.
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Fig. 9. Quintic NLS equation with V = �2juj4. Left: Exact solution. Right: Comparison. The numerical solution is computed with D = 1
and r0 = 5.
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5. High-dimensional NLS equation

A remarkable advantage of PML for the Schrödinger wave equations lies in the easy extension to high
dimensions. In this section we will show how this can be done. For simplicity and brevity, we confine ourselves
to the NLS equation in two dimensions
iotuþ o2
xuþ o2

y u ¼ V ðx; y; t; juj2Þu: ð5:1Þ
The initial function is supposed to be compactly supported in a rectangular domain [xL,xR] · [yL,yR]. We sim-
ply modify the (5.1) with the PML technique in x- and y-directions independently, and obtain an equation on
an enlarged domain [xLP,xRP] · [yLP,yRP]
iotuþ c1oxðc1oxuÞ þ c2oyðc2oyuÞ ¼ V ðx; y; t; juj2Þu: ð5:2Þ

Here, c1 = 1/(1 + Rr1) and c2 = 1/(1 + Rr2) with
r1ðxÞ ¼
r0ðx� xLÞ2; xLP < x < xL;

0; xL < x < xR;

r0ðx� xRÞ2; xR < x < xRP:

8><
>: ; r2ðyÞ ¼

r0ðy � yLÞ
2
; yLP < y < yL;

0; yL < y < yR;

r0ðy � yRÞ
2
; yR < y < yRP:

8><
>:
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Again, zero DBC is imposed at the boundary of [xLP,xRP] · [yLP, yRP].
For the constant potential LS equation in two dimensions, the PML Eq. (5.2) results perfect matching to

the interior governing equation. Since dissipation is supplemented in both two directions, the solution of (5.2)
is also fast damping and long-time stable. These points fully justify the applicability of the PML for high-
dimensional Schrödinger wave equations. We would remark that this merit of the PML is not universal at
all. For most hyperbolic systems, it is still an open issue to design a high-dimensional PML formulation which
is perfect matching, fast damping and long-time stable, see [6]. But for the Maxwell’s equations, this issue is
largely solved, see [10].

Now let us consider the semi-discretization in time. Set un(x,y) � u(x,y, tn). Again, the time-splitting tech-
nique is employed to handle the nonlinearity in (5.2). Given un, we compute un+1 with two steps. First, we solve
the nonlinear equation
iotu ¼ V ðx; y; t; juj2Þu; ð5:3Þ

with the initial data un in [tn, tn+1], to obtain u* = u(tn+1). Then, we solve the linear equation
iotuþ c1oxðc1oxuÞ þ c2oyðc2oyuÞ ¼ 0; ð5:4Þ

with the initial data u* in [tn, tn+1] again, to obtain un+1.

Next we consider spatial discretization. Let
hx ¼
xRP � xLP

M
; hy ¼

yRP � yLP

N
; xk ¼ xLP þ khx; yl ¼ yLP þ lhy ; ð5:5Þ

c1;k ¼ c1ðxkÞ; c2;l ¼ c2ðylÞ; U n
k;l � uðxk; yl; tnÞ; ð5:6Þ

eD2
xUn

k;l ¼
c1;kc1;k�1

2

h2
x

U n
k�1;l �

c1;k c1;k�1
2
þ c1;kþ1

2

� �
h2

x

Un
k;l þ

c1;kc1;kþ1
2

h2
x

Un
kþ1;l; ð5:7Þ

eD2
y Un

k;l ¼
c2;lc2;l�1

2

h2
y

U n
k;l�1 �

c2;l c2;l�1
2
þ c2;lþ1

2

� �
h2

y

Un
k;l þ

c2;lc2;lþ1
2

h2
y

Un
k;lþ1: ð5:8Þ
Analogous to the analysis of Eqs. (4.5) and (5.3) is solved by
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U �k;l ¼ Un
k;le
�iDt

2 V xk ;yl;tn;jUn
k;lj

2ð ÞþV xk ;yl;tnþ1;jUn
k;lj

2ð Þð Þ:
As to Eq. (5.4), a direct implementation of the Crank–Nicolson central difference scheme would lead to the
following linear system
2i

Dt
U nþ1

k;l þ eD2
xU nþ1

k;l þ eD2
y Unþ1

k;l ¼
2i

Dt
U �k;l � eD2

xU �k;l � eD2
y U �k;l: ð5:9Þ
Though the coefficient matrix is sparse, it has a large bandwidth, thus any direct solver for this linear system
would be very expensive. Alternatively, on a rectangular domain with the zero DBC, an equation like (5.4) can
be efficiently solved with the ADI method. Namely, Eq. (5.4) is solved with the following two steps
2i

Dt
U ��k;l þ eD2

xU ��k;l ¼
2i

Dt
U �k;l � eD2

y U �k;l; ð5:10Þ

2i

Dt
U nþ1

k;l þ eD2
y U nþ1

k;l ¼
2i

Dt
U ��k;l � eD2

xU ��k;l: ð5:11Þ
At each step, a set of linear systems with tridiagonal coefficient matrix need to be solved, which can be accom-
plished efficiently with the Thomas method.

Now combining the Strang’s splitting technique, we derive a numerical scheme which is second order in
both time and space:

Step 0: Given Un
k;l;

Step 1: Let
U �k;l ¼ Un
k;le
�iDt

4 V xk ;yl;tn;jUn
k;lj

2ð ÞþV xk ;yl;tnþ1;jUn
k;lj

2ð Þð Þ;
Step 2: Solve U ��k;l by
2i

Dt
U ��k;l þ eD2

xU ��k;l ¼
2i

Dt
U �k;l � eD2

y U �k;l;
Step 3: Solve U ���k;l by
2i

Dt
U ���k;l þ eD2

y U ���k;l ¼
2i

Dt
U ��k;l � eD2

xU ��k;l;
Step 4: Finally, we set
U nþ1
k;l ¼ U ���k;l e�

iDt
4 V xk ;yl;tn;jU���k;l j

2ð ÞþV xk ;yl;tnþ1;jU���k;l j
2ð Þð Þ:
We use this scheme to study the evolution of four 2D Gaussian beams with a focusing cubic nonlinearity,
i.e. we set
u0ðx; yÞ ¼
X4

j¼1

expð�x2 � y2 þ ikx;jxþ iky;jyÞ; V ¼ �2juj2;
where (kx,1,ky,1) = (1,1), (kx,2,ky,2) = (�1,1), (kx,3,ky,3) = (�1, � 1) and (kx,4,ky,4) = (1, �1). The physical do-
main is set to be [xL, xR] · [yL, yR] = [�4, 4]2, and the computational domain is set to be
[xLP,xRP] · [yLP,yRP] = [�5, 5]2. Besides, we set r0 = 10, hx = hy = 0.01 and Dt = 0.001.

The solution of the 2D cubic focusing NLS equation might blow-up if the initial state energy defined as
(4.10) is less than zero. For each Gaussian beam, a direct computation shows
Eðu0Þ � 80:5489 > 0;
which suggests the blow-up will not appear. In Fig. 12 we depict the numerical solutions at several time points.
No reflection can be observed at the physical boundary. We should note that different colormaps are used for
different snapshots of Fig. 12.



Fig. 12. Snapshots of numerical solutions for the 2D NLS equation. V = �2juj2. (a) t = 0.1; (b) t = 0.2; (c) t = 0.3; (d) t = 0.4.
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6. Schrödinger-coupled systems

If the potential V of NLS equation has a global part, which means V depends on the wave function by a
nonlocal means, a Schrödinger-coupled system usually brings out. There are a number of this kind of systems
which play important roles in various application fields, such as plasma physics [1], molecular chains [19], and
quantum transport in semi-conductor devices [7,38]. To explore the possibility of applying PML for such sys-
tems, we consider the following 2D Schrödinger-Poisson system on waveguide
iotuþ o2
xuþ o2

y u ¼ Vu; ðx; yÞ 2 R� ½yL; yR�; ð6:1Þ
� o2

xV � o2
y V ¼ juj2; ðx; yÞ 2 R� ½yL; yR�: ð6:2Þ
We assume the initial function u0 is compactly supported in [xL,xR] · [yL,yR], and the zero DBC is imposed at
the physical boundary for both the wave function u and the potential V. Besides, we assume u tends to zero
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and V remains bounded when the location point goes to infinity. The number of studies on the well-posedness
and semi-classical limit of Schrödinger-Poisson system is huge, see [36] for an example.

Applying PML on [xLP,xRP] · [yL,yR] we derive a modified Schrödinger-Poisson system
iotuþ coxðcoxuÞ þ o2
y u ¼ Vu; ðx; yÞ 2 ½xLP; xRP� � ½yL; yR�; ð6:3Þ

� o2
xV � o2

y V ¼ juj2; ðx; yÞ 2 R� ½yL; yR�: ð6:4Þ
Now the wave function u with zero DBC is defined only on [xLP,xRP] · [yL,yR], but the potential V is still de-
fined on the whole waveguide R · [yL,yR]. Notice that in Eq. (6.4), we have made a zero extension of wave
function u in the outside of [xLP,xRP] · [yL,yR].

Let
hy ¼
yR � yL

N
; yl ¼ yL þ lhy ; ux;lðtÞ � uðx; yl; tÞ; V x;lðtÞ � V ðx; yl; tÞ; ð6:5Þ

D2
y ux;l ¼

1

h2
y

ux;l�1 �
2

h2
y

ux;l þ
1

h2
y

ux;lþ1; l ¼ 1; . . . ;N � 1: ð6:6Þ
The semi-discretization of Eqs. (6.3)–(6.4) in y direction yields a nonlinear PDE system
iotux;l þ coxðcoxux;lÞ þ D2
y ux;l ¼ V x;lux;l; x 2 ½xLP; xRP�; ð6:7Þ

� o2
xV x;l � D2

y V x;l ¼ jux;lj2; x 2 R; l ¼ 1; . . . ;N � 1: ð6:8Þ
We consider the time discretization with the time-splitting technique. Let un
x;l � ux;lðtnÞ. Given un

x;l, we take two
steps to derive unþ1

x;l . First, we solve the nonlinear PDE system
iotux;l ¼ V x;lux;l; x 2 ½xLP; xRP�; ð6:9Þ
� o2

xV x;l � D2
y V x;l ¼ jux;lj2; x 2 R; l ¼ 1; . . . ;N � 1; ð6:10Þ
with the initial datum un
x;l in [tn, tn+1], to obtain u�x;l ¼ ux;lðtnþ1Þ. Then, we solve the linear equations
iotux;l þ coxðcoxux;lÞ þ D2
y ux;l ¼ 0; x 2 ½xLP; xRP�; l ¼ 1; . . . ;N � 1; ð6:11Þ
with the initial datum u�x;l in [tn, tn+1] again, to obtain unþ1
x;l ¼ ux;lðtnþ1Þ.

From Eq. (6.9), it is direct to verify that jux;lðtÞj2 ¼ jun
x;lj

2, thus Eq. (6.10) actually defines a ODE system,
with the unknown functions Vx,l coupled together. Remember that we assume the zero DBC at the physical
boundary. By the fast sine transform (FST)
dV x;l0 ¼
def

2
XN�1

l¼1

V x;l sin
l0lp
N

;
ddV x;l ¼ 2NV x;l; ð6:12Þ
in the transformed space, Eq. (6.10) reads
�o2
x
dV x;l0 þ kl0

dV x;l0 ¼ djun
x;l0 j

2
; x 2 R; l0 ¼ 1; . . . ;N � 1; ð6:13Þ
where
kl0 ¼
N 2ð2� 2 cos l0p

N Þ
ðyR � yLÞ

2
; l0 ¼ 1; . . . ;N � 1;
are the eigenvalues associated with the FST on the interval [yL,yR]. The N � 1 functions dV x;l0 are decoupled
completely. Since un

x;l, thus
djun
x;l0 j

2 , is supported in [xLP,xRP], Eq. (6.13) is equivalent to
� o2
x
dV x;l0 þ kl0

dV x;l0 ¼ djun
x;l0 j

2
; x 2 ½xLP; xRP�; l0 ¼ 1; . . . ;N � 1; ð6:14Þ

� ox
dV x;l0 ðxLPÞ ¼ �

ffiffiffiffiffi
kl0

p dV x;l0 ðxLPÞ; ð6:15Þ
ox
dV x;l0 ðxRPÞ ¼ �

ffiffiffiffiffi
kl0

p dV x;l0 ðxRPÞ; l0 ¼ 1; . . . ;N � 1: ð6:16Þ
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After Vx,l is computed, u�x;l is then computed through Eq. (6.9) as
Fig. 13
t = 0.2
u�x;l ¼ un
x;le
�iV x;lDt:
As to Eq. (6.11), by the FST it is equivalent to
iotdux;l0 þ coxðcoxdux;l0 Þ � kl0dux;l0 ¼ 0; x 2 ½xLP; xRP�; l0 ¼ 1; . . . ;N � 1:
This expresses a set of N � 1 decoupled PDEs.
Combining the Strang’s splitting technique, we can obtain a second-order scheme

Step 0: Given un
x;l;

Step 1: Compute Vx,l through
� o
2
x
dV x;l0 þ kl0

dV x;l0 ¼ djun
x;l0 j

2
; x 2 ½xLP; xRP�; l0 ¼ 1; . . . ;N � 1; ð6:17Þ

� ox
dV x;l0 ðxLPÞ ¼ �

ffiffiffiffiffi
kl0

p dV x;l0 ðxLPÞ; ð6:18Þ
ox
dV x;l0 ðxRPÞ ¼ �

ffiffiffiffiffi
kl0

p dV x;l0 ðxRPÞ; l0 ¼ 1; . . . ;N � 1; ð6:19Þ
Step 2: Set
u�x;l ¼ un
x;le
�iV x;lDt=2;
Step 3: Solve the following equation with the initial datum u�x;l in [tn, tn+1], to obtain u��x;l

iotdux;l0 þ coxðcoxdux;l0 Þ � kl0dux;l0 ¼ 0; x 2 ½xLP; xRP�; l0 ¼ 1; . . . ;N � 1; ð6:20Þ
Step 4: Compute Vx,l through
� o
2
x
dV x;l0 þ kl0

dV x;l0 ¼ dju��x;l0 j2 ; x 2 ½xLP; xRP�; l0 ¼ 1; . . . ;N � 1; ð6:21Þ

� ox
dV x;l0 ðxLPÞ ¼ �

ffiffiffiffiffi
kl0

p dV x;l0 ðxLPÞ; ð6:22Þ
ox
dV x;l0 ðxRPÞ ¼ �

ffiffiffiffiffi
kl0

p dV x;l0 ðxRPÞ; l0 ¼ 1; . . . ;N � 1; ð6:23Þ
. Snapshots of numerical solutions for the Schrödinger–Poisson system. Top: numerical solution. Bottom: reference solution. (a)
; (b) t = 0.3; (c) t = 0.4; (d) t = 0.5.
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Step 5: Set
unþ1
x;l ¼ u��x;le

�iV x;lDt=2:
The discretization in the x direction is achieved with the central difference scheme, and the time derivative in
Eq. (6.20) is approximated by the Crank–Nicolson scheme. All the resulting linear systems have tridiagonal
coefficient matrices, thus are easy to solve. We omit the detailed discussion here. We would remark that other
types of physical boundary conditions can be considered analogously.

Now we use our scheme to study the evolution of a traveling Gaussian beam in a waveguide of width 4. The
initial function is
u0ðxÞ ¼ e�4x2�4y2þix;
which is well supported in [�2, 2]2. We set the computational domain as [�3, 3] · [�2, 2], and let r0 = 10. The
numerical solution is obtained with hx = hy = 0.01, Dt = 0.001. To make comparison, we have both the spatial
stepsize and the time step, and perform the computation on a large computational domain [�11, 11] · [�2, 2]
to get a reference solution. Fig. 13 shows both the numerical solution and the reference solution at different
time points. We see that they match very well.

7. Conclusions

The PML absorbing boundary conditions have been widely used to simulate waves in unbounded domains.
The fundamental idea, which is best interpreted as a complex continuation of the real variable, has been
extended to much complicated fluid dynamics problems.

In this paper, we have applied the PML technique to the nonlinear Schrödinger wave equations. The suc-
cess lies in the time-transverse invariant property which holds for both the original and the PML-modified
Schrödinger wave equations. It has been shown by numerical experiments that if waves keep moving out
of the physical domain, the PML method usually presents good numerical approximations, no matter which
kind of Schrödinger wave equation (with real potential) is considered. Of great interest is the PML for the
Schrödinger–coupled systems. Though only a simple-versioned Schrödinger–Poisson system has been consid-
ered in this paper, its generalization to more complicated versions, such as the N-particle Schrödinger–Poisson
system and the Schrödinger–Poisson-Xa model, and other coupled systems, such as Schrödinger-Maxwell sys-
tem, is straightforward.

Our numerical tests have revealed that though the PML absorbing layers can be made perfectly absorbing
for the linear Schrödinger equation with constant potentials, this is not possible for other Schrödinger wave
equations. Intrinsic reflection appears in the PML absorbing layers. How to further improve the performance
of PML is an interesting issue which deserves consideration.
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